Outgoing Messages
Attack Enemy City
Message Name:

ACT_ATTACK_CITY
Description:

Instructs a unit to attack an enemy city
Message Arguments: 

@API_Army p_aArmy  
//army unit to attack with

@API_Location p_lDestination   //location of city to attack

Triggered By:

Incoming Message: UPD_CITY_ATTACKABLE
API Functions this will call: 

AttackCityPosWithArmy( API_Army p_aArmy, const API_Location p_lDestination )

Replied to with:
UPD_ATTACK_CITY if attack was won

DESTROYED_UNIT if attack was lost
Attack Enemy Unit
ACT_ATTACK_UNIT
Description:

Instructs a unit to attack an enemy army

Message Arguments:


@API_Army p_aArmy 
//army unit to attack with


@API_Location p_lDestination  //location of enemy unit to attack

Triggered By:

Incoming Message: UPD_UNIT_ATTACKABLE
API Functions this will call:
AttackEnemyPosWithArmy( API_Army p_aArmy, const API_Location p_lDestination )
Replied to with:
UPD_ATTACK_UNIT if attack was won

DESTROYED_UNIT if attack was lost

Build City

Message Name:

ACT_SETTLE

Description:

Instructs a Settler to move to a point on the map and build a city there
Message Arguments: 

@API_Army p_aArmy    //Settler to build the new city

Triggered By:

Incoming message: UPD_CITY_BUILDABLE
API Functions this will call: 
Settle( API_Army p_aArmy )

Replied to with:
UPD_SETTLED_CITY_ID

Defend a City
Message Name:

ACT_GARRISON

Description:

Instructs a unit to garrison at its current location
Message Arguments: 

@API_Army p_aArmy             //army unit to defend with

Triggered By:

Incoming Message: UPD_GARRISON
API Functions this will call: 
ArmyToDefend( API_Army p_aArmy );
Replied to with:
No need for a response since garrisoning is a deterministic action.  UPD_GARRISON will trigger the Garrisoning observation model.
Move a Unit
Message Name:

ACT_MOVE

Description:

Instruct a unit to move to a specified location
Message Arguments: 

@API_Army p_aArmy              //unit to be moved

@API_Location p_lDestination   //location to move that unit to

Triggered By:

Incoming Message: UPD_MOVEABLE

API Functions this will call: 
MoveArmyTo( API_Army p_aArmy, const API_Location p_lDestination )

Replied to with:
No immediate reply, but UPD_ARMY_XY will be sent at the start of the next turn to indicate where the moved army is
Create a Unit
Message Name:

ACT_PRODUCE

Description:

Create a unit in a specified city
Message Arguments: 

@API_City p_cCity       //city to create the unit

@int p_iUnitType         //integer representation of unit to create

Triggered By:

Incoming Message: UPD_UNIT_BUILDABLE
API Functions this will call: 
CityBuild( API_City p_cCity, const API_UnitType p_iUnitType )

Replied to with:
No immediate reply because the unit is placed in the build queue and takes some number of turns to complete.  When the unit is finished NEW_UNIT_COMPLETED will be sent.
Improve a City

Message Name:

ACT_IMPROVE

Description:

Build a city improvement in a specified city
Message Arguments: 

@API_City p_cCity     //city to build the improvement

@int p_iImproveType  //integer representation of improvement type to create

Triggered By:

Incoming Message: UPD_IMPROVEMENT_BUILDABLE
API Functions this will call: 
CityImprove( API_City p_cCity, const API_CityImprovementType p_iImproveType )

Replied to with:
No reply because the improvement gets placed in the build queue.  There is no notification when the improvement is completed because city improvements are not tracked in the game state.
Stop a Garrison
ACT_UNGARRISON

Description:

Stop a unit from garrisoning a city

Message Arguments:

@API_Army p_aArmy              //unit to stop garrisoning
Triggered By:

Incoming Message: UPD_UNGARRISON
API Functions this will call: 

StopDefending( API_Army p_aArmy )
Replied to with:
No need for a response since ungarrisoning is a deterministic action.  UPD_UNGARRISON will trigger the StoppedGarrisoning observation model.
Load a game
GAME_LOAD

Description:

Loads a game

Message Arguments:


@name   //name of game to be loaded

Triggered By:

Action Model: Load
API Functions this will call:

LoadGame
Replied to with:
UPD_LOAD
Save a game
GAME_SAVE

Description:

Saves the current game

Message Arguments:


@name  //name of game to be saved

Triggered By:

Action Model: Save
API Functions this will call:

SaveGame

Replied to with:
UPD_SAVE

End the Turn

END_TURN

Description:

Ends your current turn

Message Arguments:


none
Triggered By:

Action Model: EndTurn
API Functions this will call:

None

Replied to with:
None
Acknowledge game start
HELLO

Description:

Acknowledges program starting

Message Arguments:


none
Triggered By:

Incoming Message: CTP2_START
API Functions this will call:

None

Replied to with:
GAME_START
Query Attackable Enemy City

Message Name:

QU_ATTACK_CITY

Description:

Query whether your unit can attack an enemy city
Message Arguments: 

@API_Army p_aArmy     //army unit to do the exploration

@API_Location p_lDestination   //location of city to attack

Triggered By:

Action Model: QueryAttackCity
API Functions this will call: 
QueryCityAttackable( API_Army p_aArmy, API_Location p_lDestination );

Replied to with:
UPD_CITY_ATTACKABLE

Query Attackable Enemy Unit

Message Name:

QU_ATTACK_UNIT

Description:

Query whether your unit can attack an enemy unit
Message Arguments: 

@API_Army p_aArmy     //army unit to do the exploration

@API_Location p_lDestination   //location of city to attack

Triggered By:

Action Model: QueryAttackUnit
API Functions this will call: 
QueryUnitAttackable( API_Army p_aArmy, API_Location p_lDestination );

Replied to with:
UPD_UNIT_ATTACKABLE
Query Map

Message Name:

QU_UNEXPLORED_MAP

Description:

Query for an unexplored map square around a unit.  Note that this will only provide one unexplored map square, and it is not guaranteed to find the nearest one.
Message Arguments: 

@API_Army p_aArmy     //army unit to do the exploration

Triggered By:

Action Model: QueryUnexploredMap
API Functions this will call: 
FindUnexplored( API_Army p_aArmy, API_Location & p_lUnexplored )

Replied to with:
UPD_UNEXPLORED_MAP

Query Enemy Units
QU_ENEMY_UNIT

Description:

Query for enemy army units in visible range of a unit
Message Arguments: 

@API_Army p_aArmy     //army unit to do the exploration

@int p_iVisionRange       //Vision range of the unit (either 1 or two)

Triggered By:

Action Model: QueryEnemyUnit
API Functions this will call: 
FindEnemyUnit( API_Army p_aArmy, const int p_iVisionRange, DynamicArray<Unit> * p_pEnemyList )

Replied to with:
UPD_ENEMY_UNIT

Query Enemy Cities

QU_ENEMY_CITY
Description:

Query for enemy cities in visible range of a unit
Message Arguments: 

@API_Army p_aArmy     //army unit to do the exploration

@int p_iVisionRange       //Vision range of the unit (either 1 or two)

Triggered By:

Action Model: QueryEnemyCity
API Functions this will call: 
FindEnemyCity( API_Army p_aArmy, const int p_iVisionRange, DynamicArray<Unit> * p_pCityList )

Replied to with:
UPD_ENEMY_CITY

Query Buildable Tile

QU_CITY_BUILDABLE

Description:

Query if a unit can build a city at its current location
Message Arguments:


@API_Army

p_aArmy      //army unit to build the city
Triggered By:

Action Model: QueryCityBuildable
API Functions this will call:

CityBuild( API_City p_cCity, const API_UnitType p_iUnitType );

Replied to with:
UPD_CITY_BUILDABLE

Query Moveable Tile

QU_MOVEABLE

Description:

Query if a given unit can move to a given tile (ex: Settlers can’t move onto ocean, ships can’t move onto land)

Message Arguments:


@API_Army
p_aArmy
//army unit to move


@API_Location
p_lLocation
//location to move that unit to

Triggered By:

Action Model: QueryMoveable
API Functions this will call:

QueryMoveable( API_Army p_aArmy, API_Location p_lLocation );

Replied to with:
UPD_MOVEABLE
Query Buildable Unit

QU_UNIT_BUILDABLE

Description:

Query if a given unit can be built in a city (ie: you are far enough in the tech tree to build it)

Message Arguments:


@integer
unit_type
//integer representation of unit you want to build


@API_City
p_cCity
//city you want to build that unit in

Triggered By:

Action Model: QueryUnitBuildable
API Functions this will call:

QueryUnitBuildable( int unit_type, API_City p_cCity );

Replied to with:
UPD_UNIT_BUILDABLE
Query Buildable City Improvement

QU_IMPROVEMENT_BUILDABLE

Description:

Query if a city improvement can be built in a specified city (ie: you are far enough in the tech tree to build it)

Message Arguments:


@integer 
improvement
//integer representation of the improvement you want to build


@API_City
p_cCity
//city you want to build the improvement in

Triggered By:

Action Model: QueryImprovementBuildable
API Functions this will call:

QueryImprovementBuildable( int improvement_type, API_City p_cCity );

Replied to with:
UPD_IMPROVEMENT BUILDABLE

Query Garrisoning Unit

QU_GARRISON
Description:

Query whether a given unit can garrison its current location
Message Arguments:


@API_Army
p_aArmy 
//army you are querying about

Triggered By:

Action Model: QueryGarrison
API Functions this will call:

QueryGarrison( API_Army p_aArmy );

Replied to with:
UPD_GARRISON
Query Stopping a Garrison
QU_UNGARRISON
Description:

Query whether a given unit can stop garrisoning its current location
Message Arguments:


@API_Army
p_aArmy 
//army you are querying about

Triggered By:

Action Model: QueryUngarrison
API Functions this will call:

QueryUngarrison( API_Army p_aArmy )

Replied to with:
UPD_UNGARRISON
Incoming Messages
Update: Attack Enemy City
Message Name:

UPD_ATTACK_CITY
Description:

Update to indicate success or failure of a unit you control (with ID of armyID) attacking city at location (x,y)
Message Arguments: 

@bool success

//set true if unit destroyed city, false if it died in the process

@int armyID

//ID of army that attacked the city

@int x_pos

//x-position of city that was attacked

@int y_pos

//y-position of city that was attacked

Triggered By: 

ACT_ATTACK_CITY

State update:

If (success)

Remove enemy city from enemy_city_locations array

num_enemy_cities--


Call: EnemyCityDestroyed observation model

Update: Attack Enemy Army

Message Name:

UPD_ATTACK_UNIT

Description:

Update to indicate success or failure of a unit you control (with ID of armyID ) attacking an enemy unit at location (x,y)
Message Arguments: 

@bool success

//set true if your unit won, false if it died in the process

@int armyID

//ID of army that attacked the city

@int x_pos

//x-position of unit that you attacked with

@int y_pos

//y-position of unit that you attacked with

Note: this does not report the x-y position of the unit that was destroyed
Triggered By: 

ACT_ATTACK_UNIT

State update:

If (success)


Call: EnemyUnitDestroyed observation model
Update: Settled City ID

Message Name:

UPD_SETTLED_CITY_ID

Description:

Update to indicate the ID of the city built by the settler and location passed in by the ACT_SETTLE message
Message Arguments: 

@int cityID

//ID of the newly built city

@int x_pos

//x position of city built

@int y_pos

//y position of city built

Triggered By: 

ACT_SETTLE

State update:

Add city to my_city_locations array

num_my_cities++

Call: CitySettled observation model

Update: New Unit Finished Building
Message Name:

NEW_UNIT_COMPLETED

Description:

Update to indicate information about a new unit that has finished building
Message Arguments: 

@int armyID


//ID of army unit being produced

@int x_pos


//x-position of the new unit

@int y_pos


//y-position of the new unit

@int type 


//the integer representation of the type of unit made

Triggered By: 

-a new unit being created

State update:
Add this new unit to my_army_locations array
Call: NewUnitBuilding observation model

Update: Query Unexplored Map

Message Name:

UPD_UNEXPLORED_MAP
Description:

Update to indicate an unexplored tile near one of your units
Message Arguments: 

@bool success

//set true if there is an unexplored tile around that unit

@int armyID

//ID of army that is performing the search

@int x_pos

//x-position of the tile returned

@int y_pos

//y-position of the tile returned

Triggered By: 

QU_UNEXPLORED_MAP

State update:

Call: UnexploredTile observation model
Update: Query Enemy Unit

Message Name:

UPD_ENEMY_UNIT

Description:

Update to indicate the existence of enemy units in visual range of a specific army unit you control

Message Arguments: 

@bool success

//set true if there are any enemy units in visual range of your unit

@Array[] int positions
//array of x and y positions (respectively) for units found
Triggered By: 

QU_ENEMY_UNIT
-also triggered at the start of every turn if there are enemy units nearby your units
State update:
if (success)

Call: NearEnemyUnit observation model
Update: Query Enemy City

Message Name:

UPD_ENEMY_CITY

Description:

Update to indicate the existence of enemy cities in visual range of a specific army unit you control

Message Arguments: 

@bool success

//set true if there are any enemy cities in visual range of your unit

@Array[] int positions
//array of x and y positions (respectively) for cities found
Triggered By: 

QU_ENEMY_CITY
-also triggered at the start of every turn if there are enemy cities nearby
State update:

if (success)

Add these locations to enemy_city_locations array

num_enemy_cities = num_enemy_cities + length of array
Call: NearEnemyCity observation model

Update: Army X,Y position 
Message Name:

UPD_ARMY_XY

Description:

Update to indicate an army’s x,y location

Message Arguments: 

@int armyID

//ID of army unit that has been moved
@int x_pos
//x position of the unit

@int y_pos
//y position of the unit
@int type 

//the integer representation of the type of unit moved
Triggered By: 

Start of your turn
State update:

Set army x and y position in my_army_locations array

Call: UpdatePosition observation model

Update: Buildable Tile

Message Name:

UPD_CITY_BUILDABLE

Description:

Update to indicate whether a city can be built on a certain tile

Message Arguments: 

@bool success
//set true if there is an a city can be built on the x,y position passed in from QU_CITY_BUILDABLE message

@int armyID
//ID of the unit that will build the city

@int x_pos
//x-location where city will be built

@int y_pos
//y-location where city will be built

Triggered By: 

QU_CITY_BUILDABLE

State update:

Call: CityBuildable observation model

If (success) 
Call: ACT_SETTLE outgoing message to build the city there

Update: Moveable Tile

Message Name:

UPD_MOVEABLE

Description:

Update to indicate whether a unit can be moved to a certain tile

Message Arguments: 

@bool success
//set true if the unit in question can move to the tile passed in from the QU_MOVEABLE message

@int armyID
//ID of the unit that will move

@int x_pos
//x-location where the unit is
@int y_pos
//y-location where the unit is

@int x_dest
//x-location the unit will move to

@int y_dest
//y-location the unit will move to
Triggered By: 

QU_MOVEABLE

State update:

Call: UnitMoveable observation model

If (success)

Call: ACT_MOVE outgoing message to move the unit there

Update: Unit Buildable

Message Name:

UPD_UNIT_BUILDABLE

Description:

Update to indicate whether a unit can be built (ie: you are far enough in the tech tree to build it)

Message Arguments: 

@bool success
//set true if the unit type in question can be built

@int cityID
//city unit will be built in


@int unit_type
//type of unit to build

Triggered By: 

QU_UNIT_BUILDABLE

State update:

Call: UnitBuildable observation model

If (success)


Call: ACT_PRODUCE outgoing message to make the unit

Update: City Improvement Buildable

Message Name:

UPD_IMPROVEMENT_BUILDABLE

Description:

Update to indicate whether a city improvement can be built (ie: you are far enough in the tech tree to build it)

Message Arguments: 

@bool success
//set true if the improvement type in question can be built

@int cityID
//ID of city to build the improvement

@int improvement_type
//type of improvement to build

Triggered By: 

QU_IMPROVEMENT_BUILDABLE

State update:

Call: ImprovementBuildable observation model

If (success)


Call: ACT_IMPROVE outgoing message

Update: Unit Garrisoning
Message Name:

UPD_GARRISON

Description:

Update to indicate whether a given unit can garrison its current location
Message Arguments: 

@bool success
//set true if the unit is garrisoning a city

@int armyID
//ID of the unit that is now garrisoning

Triggered By: 

QU_GARRISON
State update:

-change garrisoning Boolean variable for armyID in my_army_locations array to true
Call: Garrisoning observation model
Update: Unit Stopped Garrisoning
Message Name:

UPD_UNGARRISON

Description:

Update to indicate whether a given unit can stop garrisoning its current location
Message Arguments: 

@bool success
//set true if the unit could stop garrisoning

@int armyID
//ID of the unit that is now ungarrisoned

Triggered By: 

QU_UNGARRISON
State update:

-change garrisoning Boolean variable for armyID in my_army_locations array to false
Call: StoppedGarrisoning observation model

Update: City Attackable
Message Name:

UPD_CITY_ATTACKABLE

Description:

Update to indicate whether a given unit can attack a given city
Message Arguments: 

@bool success
//set true if you can attack the city

@int armyID
//ID of the unit that will attack

@int x_pos
//x-position of city that will be attacked

@int y_pos
//y-position of city that will be attacked

Triggered By: 

QU_ATTACK_CITY

State update:

Call: CityAttackable observation model
Update: Unit Attackable
Message Name:

UPD_UNIT_ATTACKABLE

Description:

Update to indicate whether a given unit you control can attack an enemy unit
Message Arguments: 

@bool success
//set true if you can attack the enemy unit

@int armyID
//ID of the unit that will attack

@int x_pos
//x-position of army that you will attack with

@int y_pos
//y-position of army that you will attack with 

Triggered By: 

QU_ATTACK_UNIT

State update:

Call: UnitAttackable observation model
City Destroyed
Message Name:

DESTROYED_CITY

Description:

Update to indicate that one of your cities has been destroyed
Message Arguments: 

@int cityID
//ID of city destroyed

Triggered By: 

-one of your cities being destroyed

State update:

Remove enemy city from enemy_city_locations array

num_enemy_cities--

Call: MyCityDestroyed observation model

Unit Destroyed
Message Name:

DESTROYED_UNIT

Description:

Update to indicate that one of your units has been destroyed
Message Arguments: 

@int armyID
//ID of army destroyed

Triggered By: 

-one of your units being destroyed

State update:

Remove unit with ID of armyID from my_army_locations array
num_my_armies--

Call: MyUnitDestroyed observation model

Game Turn passed
Message Name:

GAME_TICK

Description:

Update to indicate the end of any turn
Message Arguments: 

none
Triggered By: 

-Any turn ending

State update:

curr_turn++

Call: TurnOver observation model

Your Turn begins
Message Name:

GAME_MYTURN

Description:

Update to indicate that it is now your turn
Message Arguments: 

none
Triggered By: 

-Enemy turns ending

State update:

Call: MyTurn observation model

Player ID
Message Name:

GAME_MY_ID

Description:

Update to tell you what your player ID is
Message Arguments: 

@int playerID
//your player ID

Triggered By: 

-game starting

State update:

my_player_id = playerID

Call: MyID observation model

Program Start
Message Name:

CTP2_START

Description:

Message to indicate start of CTP2 program
Message Arguments: 

none
Triggered By: 

- program starting

State update:

Call: Connected observation model

Call: HELLO outgoing message
Game Start
Message Name:

GAME_START

Description:

Message to indicate start of game
Message Arguments: 

none
Triggered By: 

- game starting

State update:

Call: GameStarted observation model

Game Lost
Message Name:

GAME_LOSE

Description:

Update to indicate a loss
Message Arguments: 

none
Triggered By: 

-losing the game

State update:

Call: Lose observation model

Game Won
Message Name:

GAME_WIN

Description:

Update to indicate a win
Message Arguments: 

none
Triggered By: 

-winning the game

State update:

Call: Win observation model
Game Finished
Message Name:

GAME_DONE

Description:

Message to indicate completion of game
Message Arguments: 

none
Triggered By: 

-game complete

State update:

Call: GameOver observation model
Program End

Message Name:

CTP2_END

Description:

Message to indicate end of CTP2 program
Message Arguments: 

none
Triggered By: 

- program ending

State update:

Call: Disconnected observation model

Game Loaded

Message Name:

UPD_LOAD

Description:

Indicates success or failure of loading a game
Message Arguments: 

@bool success
//set true if game was loaded, false otherwise

Triggered By: 

GAME_LOAD

State update:

Call: GameLoaded observation model

Game Saved
Message Name:

UPD_SAVE

Description:

Indicates success or failure of saving a game
Message Arguments: 

@bool success
//set true if game was saved, false otherwise

Triggered By: 

GAME_SAVE

State update:

Call: GameSaved observation model

